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Abstract

Hydrodynamic instabilities in wavy channels and their effect on the convective heat transfer are investigated using both linear
stability analysis and integration of the time dependent Navier-Stokes and energy equations. The linear stability of the fully devel-
oped flow is determined from a generalized eigenvalue problem resulting from a Galerkin approach using divergence free Chebychev
basis functions and trigonometric polynomials. Several axial periodicity lengths to geometry length ratios have been considered. For
our geometry, the instability is found to set in as a Toltmien Schiichting wave, at a Reynolds number approximately equal to 90. The
dynamics of the detachment and reattachment points and of temperature field for constant wall temperature are examined under the
assumption of small amplitude fluctuations. It is shown that, although the average heat transfer remains almost constant, large
amplitude variations of the local heat transfer coefficient can be observed, this effect is increasing with increasing Prandtl
number. © 1998 Published by Elsevier Science Inc. All rights reserved.

E geometrical amplitude of the wall shape (m)
H, minimum half height of the channel (m)
L spatial period of the channel (m)

Notation
Dimensional symbols
T temperature (°C)

Uy average mean velocity (m/s)

Dimensionless symbols

Cy wall shear stress coefficient

i complex number (i’ = —1)
M number of geometrical periodicity length

(x, ) cartesian co-ordinates

h shape of the wall
Nu Nusselt number
P, On Polynomials

Pe Peclet number

Pr Prandtl number
Re Reynolds number
t time

(u, t) velocity components
Greek

A AL A A, Laplacians

(=0 + 1y cigenvalues

& co-ordinates

/. reduced half period = (L/Hy)/n

" Corresponding author, E-mail: serge.blancher@univ-pau.fr.

W stream function

w vorticity

0 temperature

0 heat flux density
Symbols

C Yoy & derivative

(QEDE partial & derivative
) partial n derivative
« ) partial time derivative
« )y steady solution
() perturbation

( F straight channel
Re real part

Im imaginary part

1. Introduction

FFlows in converging--diverging periodic channels are pres-
ent in numerous applications such as compact heat transfer ex-
changers, blood oxygenators, cooling of microelectronics
components. They have been studied intensively over the last
20 years. The first numerical studies were performed by Sobey
(1980), who solved the two-dimensional Navier-Stokes equa-
tions by a finite difference method, assuming a sinusoidal
pulsed flow rate modulation. The experimental visualisations
by Stephanoff et al. (1980) later confirmed Sobey’s results.
Asako and Faghri (1987) have made a numerical simulation
for a steady laminar flow by a finite volume approach.
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Nishimura et al. (1983, 1985) performed some experiments on
the mass transfer characteristics using an electrochemical tech-
nique for the steady laminar flow. These experiments were car-
ried out in parallel with numerical simulations by a finite
element method and flow visualizations for steady (Nishimura
et al., 1990) and transitional flows (Nishimura et al., 1986). Si-
multaneously, we investigated the steady laminar dynamic and
thermal flow fields (Blancher, 1991) — in these particular geom-
etries by numerical simulations using a Galerkin spectral meth-
od (Canuto et al.,, 1988). Ellouze (1993) made a direct two-
dimensional simulation of the non-linear equations using a fi-
nite difference discretization. The general conclusions of these
studies is that beyond a critical Reynolds number, the flow be-
comes unsteady and is then characterised by the presence of
symmetric transverse vortices. This then leads to a decrease
of the average heat transfer in comparison with the straight
channel, taking into account the pressure drop penalty. How-
ever large local heat transfer enhancement (up to 80%) can be
obtained locally — in the case of constant temperature boun-
dary condition only. This enhancement is localised slightly up-
stream the minimum section, just after the reattachment point,
corresponding to the boundary layer redevelopment. As shown
by Asako and Faghri (1987), average heat transfer enhance-
ment can also be obtained beyond a critical Reynolds number
for high Prandtl number fiuids.

In addition, flow visualisations by Nishimura et al.
(1983, 1985) have shown that the onset of unsteadiness occurs
for a critical Reynolds number approximately equal to 100,
which is much smaller than in a straight channel O(1000).
The experiments performed by Stephanoff (1980) have shown
that the self-excited shear layer oscillations appear at one or
sometimes two selectively amplified frequencies. A linear sta-
bility analysis as described by Drazin and Reid (1981) al-
lowed us to obtain the critical Reynolds number and the
nature of these instabilities. This study showed that the first
instability (the most dangerous mode) is a Tollmien Schlich-
ting (TS) wave with a wavelength and frequency which de-
pend on the geometry. Some hot wire anemometer
measurements (Blancher, 1991; Blancher et al., 1992) have
also been made. These results have confirmed the critical Rey-
nolds number and the fundamental frequencies which were
obtained numerically. Slightly beyond this critical Reynolds
number the flow is periodic in time. Similar behaviour was
observed by Ghaddar et al. (1986) or Greiner et al. (1990)
in grooved periodic geometries, who called it “self sustained
oscillating flow™. It can thus be stated that the sustained time
periodic nature of the flow is due to the periodic variations of
the channel cross section. More recently a direct three-dimen-
sional numerical simulation by Guzman and Amon (1993)
using a spectral element method has confirmed that the first
instability mechanism in the geometry considered in the ex-
periments by Nishimura et al. (1983) is indeed a two-dimen-
sional TS wave. Increasing the Reynolds number, quasi-
periodicity appears and thereafter chaos follows. The authors
have proposed a “route to turbulence” corresponding to the
Ruelle Takens scenario.

In this paper we propose to analyse the mechanism of the
local heat transfer enhancement due to the TS wave perturba-
tion. More precisely, we want to address the important issue
of the heat transfer enhancement beyond onset of unsteadiness
in the linear approximation, i.e. in the limit of infinitesimal
disturbances. The non-linear effects will be addressed else-
where. We first recall the numerical methodology based on a
spectral Galerkin method, which allows us to obtain the dy-
namic and thermal characteristics of a steady laminar fully de-
veloped flow. The linear stability of this flow is then
investigated under the assumption of two-dimensional infini-
tesimal perturbation. This stability analysis gives the critical

Reynolds number beyond which the flow bifurcates to an un-
steady one and the dynamic characteristics of the correspond-
ing eigenmode, which takes the form of a TS wave. The
influence of the ratio of the periodicity to geometry length in
the axial direction is investigated. The dynamic results are an-
alysed through the velocities and vorticity amplitude fluctua-
tions and the unsteady wall shear stress coefficients C(x,7).
This dynamic perturbation is then introduced in the energy
equation and after linearization the temperature perturbation
associated with the TS wave is obtained by a spectral method
in the case of uniform and constant wall temperature. The
temperature fluctuations, the wall heat flux density fluctua-
tions, the unsteady temperature isotherms and the time aver-
aged local Nusselt number are presented. Finally we discuss
the influence of the amplitude for the TS perturbation on
the heat transfer enhancement.

2. Problem definition and governing equations
2.1. Geometrical configuration

We consider a diverging—converging symmetric two-dimen-
sional (x, y) channel. The shape of the upper wall profile is
y=h(x). We suppose that the function / is periodic along
the x axis and twice differentiable. We assume the flow to be
laminar, incompressible, unsteady, two-dimensional and peri-
odically fully developed. The fluid is homogeneous, viscous
with constant uniform physical properties. Effect of gravity,
radiation and natural convection are supposed to be negligible.
The hypothesis of fully developed flow results in a velocity or
stream function ¥(x, v, £) which are periodic in the direction of
the flow (Ox) with a period equal to a multiple (M) of the geo-
metric period 2L.

2.2. Governing equations

The two-dimensional unsteady Navier-Stokes equations
written with the stream function  and vorticity @ functions
are made dimensionless by scaling lengths by Hp, the minimum
half width of the channel. and velocities by Ty, the averaged
velocity at this minimum section. Then the Reynolds number is

Uy Hy
—
We define new co-ordinates (&, ) by the transformation

Re = (1)

E=x// and n=y/h(&) (2)
with 4 = (L/Hy)/n. With this transformation, the unsteady Na-
vier-Stokes equations can be written as

&= —ihw =AY, (3a)

. . . - |
AR, + h( gD — Weay) = 2k, 0 = mA' 0 (3b)

and the computational domain becomes the rectangle

0<E<2Mn; —1<y< + 1. (4)

The steady problem was first solved by a spectral Galerkin
method (Blancher. 1991). The linear stability of these steady
solutions was then investigated. The assumption of small per-
turbations allows us to look for the stream function as

E ) = W) + b (Eoni), )

where ¢° is the solution of the steady problem and y' the un-
known perturbation with small amplitude ¢, The boundary
conditions on the perturbation are
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periodicity W&+ mmqu (&),
symmetry W, (€0, ) 10,0 =0. (6)
flow rate condition  y'(& £1,1) = 0.

2.3. The numerical method

The assumption of a fully developed flow and the homoge-
neous boundary conditions allow us to solve this problem by a
spectral Galerkin method. The streamfunction is developed on
a basis of trial functions which are tensor products of trigono-
metric polynomials in & by divergence free Chebychev polyno-
mials P,(n) which satisfy homogeneous Dirichlet and
Neumann boundary conditions. An explicit formula for Py(n)
is T).¢ =~ 3T;_4 + 3T;.; — T; (j> 6). The unknown stream-
function fluctuation is thus expanded as

Nx Ny

=3 0e

nee N j=0
Let X(7) be the vector composed by the unknown complex co-
efficients l// (1) and Y(z) the vorticity coefficients &, - Projec-
tion of Egs. (3a) and (3b) on the trial functions results in the
linear system:

Y = DX, (8a)

n) exp(in). {7

D,iY*LY+LX+ ! DY, (8b)

where D, D,, L, L/, D" are the discrete linear operators defined
from Egs. (3a) and (3b). This coupled system of linear equa-
tions with constant coefficients admits solutions of the form
X = Real (X exp({r)), where { is solution of the generalized ei-
genvalue problem

(AX=BX. (9)

The eigenvalue spectrum is classified according to the real
part ¢ of the eigenvalues. Each eigenvalue is associated with
an eigenvector which gives the spatial structure of the corre-
sponding perturbation. Note that the symmetry of the geom-
etry will give either symmetric or anti-symmetric modes and
that the spectrum is composed of real or complex conjugate
pairs. When the imaginary part of the eigenvalue is different
from zero, the eigenmode is perlodlc in time, whereas if it is
equal to zero, the elgenmode is steady. Let {, = gy + iy, be
the eigenvalue of maximum real part associated with the
eigenvector X,, which is called the most unstable or ““‘danger-
ous” mode. The linear stability analysis thus gives the critical
Reynolds number - beyond which small perturbations are
amplified — and the spatial structure of the perturbation at
this Reynolds number.

3. Dynamic results
3.1. Introduction

Results have been obtained for symmetric and periodic si-
nusoidal geometries defined by the shape of the upper wall
as: h(x)/Hy=1 + EIHy — (E/H,) cos(nx/L), where E is half
the amplitude of the wavy channel and H, half the width of
the channel.

Except if not explicitly stated, all the results presented cor-

respond to:

- Nishimura’s geometry (Nishimura et al., 1983), Hy=1.5
mm; period 2L =14 mm (2L/Hy =9.33) and amplitude
E=3.5 mm (2E/Hj = 2.33).

— Orders of development Nx =8 and Ny =232

~ A periodicity index M equal to 1.

3.2. Steady flow

Fig. 1 presents the steady streamlines obtained for a Rey-
nolds number of 100. Like in previous numerical simulations
and flow visualisations we observe that the steady flow is sym-
metric and that transverse vortices fill all the top and bottom
symmetric furrows. The main stream is almost parallel and
the detachment and reattachment points are, respectively, lo-
calized at x/(2L)=0.103 and x/(2L)=0.837. Table 1 gives
the positions of the detachment and reattachment points for
different Nx. Other steady results such as velocity, vorticity
and have been presented in previous works.

3.3. Linear stability

3.3.1. Plane channel

The plane two-dimensional channel is a particular case of a
wavy channel of zero amplitude. Results obtained by Orszag
(1971) can serve to validate the present numerical algorithm.
The present algorithm gives a critical Reynolds number of
3848 — with our definitions -- corresponding to the classical val-
ue of 5772 when the Reynolds number is based on the axis ve-
locity. The corresponding wavelength and frequency are
o=nH/L=1.02 and y=0.3563.

3.3.2. Wavy channel
3.3.2.1. Eigenvalue spectrum. Table 2 shows the first eigenval-
ues for different Reynolds numbers in the case M = I.

It is seen that the real part of the eigenvalues increases with
the Reynolds number. In particular, the eigenvalue ¢, corre-
sponding to the most unstable mode (mode “0”) has a real part
which becomes positive for a Reynolds number between 80
and 100. We can thus conclude that the critical Reynolds num-
ber for linear instability lies between these two values. The cor-
responding non-zero imaginary part indicates a Hopf
bifurcation. It is noted that. in the time unit considered here,
the dimensionless frequency of a given mode depends very lit-
tle on the Reynolds number. The associated dimensional fre-
quencies are defined as follows,

Fig. 1. Nishimura geometry - steady streamlines (Re = 100).

Table |

Nx=4 Nx=6 Nx=8§ Nx=10 Ny =12 Nxy=1l6e
Xq/(2L) 0.10218 0.10234 0.10321 (0.10349 0.10351 0.10334
X /(2L) 0.83646 0.83769 0.83739 0.83744 0.83744 0.83731]
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Table 2
Re =60 Re = 80 Re =100 Re =120

nj“ —0.3015 x 107! +10.24110 —(1.7762 x 107 £ 10.24474 +0.8443 x 107 i 024761 +0.3334 x 107" £ 1 0.76968
«fl -0.8821 x 10" +10.78522 —0.3579 x 107 £10. 77695 +0.3040 x 1077 £ { 0.77257 +0.2114 x 107! £ 1 0.2498]
L_:; -0.1048 +1 0.0 ~0.8385 x 10" +10.0 ~0.7006 x 107" +1 0.0 —0.5762 % 107" + i 0.55065
51 -0.1437 + 1 0.52406 —0.10390 £ 1 0.53905 ~0.7713 x 10 £10.54674 —0.6027 x 10! 3 0.0
Table 3

Ny=4 Ny=06 Nx=8 Nx=10 Ny=12
f,, +0.9979 x 1072 41 0.24410 +0.8597 x 107 £ i 0.24770 +0.8443 x 1072 + 1 0.24761 +0.8431 x 1072 £ i 0.24761 +0.8431 x 10°" +10.24761
f| ~0.9584 x 10 2 £10.79153 +0.2481 x 102 £ 0.7724] +0.3040 x 1077 + 1 0.77257 +0.2941 x 10 * £ i 0.77267 +0.2935 x 10 * £ 1 (.77268
:3 —0.7180 x 10" +1 0.0 —0.7001 x 10" £i 0.0 —0.7006 x 10 ' i 0.0 -0.7007 x 10 ' £10.0 -0.7007 x 10" £10.0
E;\ ~0.7940 x 10°7 +10.54338 —0.7679 x 107" +{0.54957 —~0.7713 x 10°" 1 0.54674 —0.7714 x 10" £10.54673 ~0.7714 x 10" + 1 0.54673

—— m0

T mt

-0.15 |- e 2

-0.20 -

Fig. 2. Real part ¢ of the eigenvalues (M =1 hypothesis) versus the
Reynolds number (critical Reynolds number).

. Uy 7Revw
/ - 27'( H() o 27[ ng
with Hy=1.5 mm and v=1.8 x 10 * m?%/s (air at 20°C) a di-
mensionless frequency of 0.245 corresponds to a dimensional
frequency around 30 Hz.

The real parts ¢ versus Re are plotted in Fig. 2. The inter-
polated critical Reynolds number Re, is approximately 88 for
the case M = 1. The second most unstable eigenvalue | has a
real part which becomes positive beyond Re =95 and the third
eigenvalue (mode 2) corresponds to a steady perturbation.
Note that the growth rate of mode | becomes larger than that
of mode 0 for Re > 100.

Influence of the order of development. Table 3 gives the evo-
Tution of the first eigenvalues for Re =100, M =1 as a function
of Nx (Ny =232). We can conclude that Nx =8 is large enough
to obtain a good approximation of these eigenvalues (real
and imaginary parts defined with more than three significative
digits).

Table 4

Re %o vo (Guzman)
83.3 0.2447 0.470235
93.3 (0.2452 0.482476

100 0.2476 0.482476

133.3 0.2490 0.482463

Comparison with direct numerical simulation. The above
results are in excellent agreement with those obtained by
Guzman and Amon (1993) with a direct three-dimensional nu-
merical simulation (in the case M=1). With our Reynolds
number definition their critical Reynolds number is between
86.6 and 90. Table 4 compares the reduced frequency 7, of
the most unstable mode obtained by Guzman and Amon
and our results with the hypothesis M =1 (results given with
our definitions).

It appears that the values obtained by Guzman are approx-
imately twice the values obtained here. Guzman and Amon de-
termined the frequency from a Fourier analysis of the
streamwise velocity component u(x, 0, 1) on the symmetry axis.
They noted that the fundamental frequencies associated with
the x and » directions are in the ratio v, /¢, =2. On the sym-
metry axis, the streamwise velocity eigenfunction is zero, and
its instantaneous value thus remains zero in the linear approx-
imation. The frequency doubling of the streamwise velocity
u(x, 0, 1) comes from the second order non-linear terms ne-
glected in the linear stability analysis, which oscillate at twice
the fundamental frequency.

Influence of periodicity hvpothesis M. Table 5 presents the
first eigenvalues for Re=100 for different ratios M =1, 2, 3
and 4. To remain numerically consistent Nx was set to 40
while Ny was kept equal to 32. This table shows that new un-
stable modes appear when the geometrical periodicity length
M increases, with different fundamental frequencies. The most
unstable mode is thus not necessarily the same as in the case
M =1, since other modes, not allowed with M =1, can come
into play. In our particular case however, the critical Reynolds
number remains approximately constant around Re = 90.

Table 5

M= M=2 M =3 M=4
;U +0.9979 x 10°? +10.24410 +0.2937 x 107" 1 0.49268 +0.38747 x 10 ' £10.994(4 +0.5544 x 1071 £ 7 (0.94692
" —0.9584 x 107 £ 10.79153 +0.9615 x 10°% £ 1 0.79095 +0.3062 x 107" +1i0.59311 +0.2961 x 10~" + i 0.49325
o -0.7180 x 10" +1 0.0 +0.9336 x 10> + i 0.24380 +0.2392 x 107" + i 0.40230 ~0.2545 x 107" +10.62782
O ~0.7940 x 10" +10.54338 ~0.2414 x 107 + 1 1.08369 +0.2391 x 10" £ i 0.26080 +0.2109 x 107! +10.35322
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Fig. 3. First eigenmodes (M = | hypothesis).

3.3.2.2. The Tollmien Schiichting wave. Fig. 3 presents the first
three modes in the case M = |. We observe for the most unsta-
ble mode (mode 0) a symmetric travelling TS wave. with a
wavelength equal to the geometric period 2L. The second
mode (mode 1) has a similar shape but with a wavelength equal
to half the geometry length (two TS waves for one geometric
period). The next mode is still symmetric but is steady
(7 =0). The fourth mode (mode 3) is the first anti-symmetric
periodic mode, and modes 4 and 5 (not shown) are. respective-
ly, anti-symmetric and symmetric stationary modes.

In the case M = 2 the spectrum is made of the modes found for
M = | and of other modes which were not allowed by the M = |
periodicity constraint. In particular the most unstable mode,
which has a critical Reynolds number very close to that of the
M =1 mode, has a wavelength equal to 3 of the geometric period
(three TS waves for two periods). In slightly different geometry we
have shown that the wavelength of the unstable mode is not nec-
essarily equal to the spatial geometric period when the periodicity
hypothesis is based on M > 1 periods of the channel. Other recent

t=0

Fig. 4. Unsteady streamlines y(x. y. /) at one instant (Re = 100, most
unstable mode. M =1 hypothesis).

results (unpublished) show that the TS wavelength takes the value
of the geometric period when the relative amplitude E/H, of the
geometry becomes sufficiently large, i.e. when the wall waviness
becomes large enough. It thus seems that there is a critical wavi-
ness amplitude E of the geometry beyond which the wavelength
of the TS perturbation becomes tuned with the geometric period.

3.3.3. Self-sustained oscillatory flow

Fig. 4 gives as an example the unsteady streamlines at one
instant in a period for a Reynolds number of 100 in the case
M = 1. The results are obtained as shown by Eq. (5) by the su-
perposition of the steady laminar flow and the TS wave. The
amplitude ¢ is chosen sufficiently small to keep the assumption
of small perturbation valid (here £¢=0.01). We note the asym-
metry of the flow and the behaviour of the unsteady vortex
centre, which moves periodically upstream and downstream.
with the passage of the TS wave.

Fig. 5 displays the instantaneous wall shear stress coefli-
cient C(x.7) defined by

Coleg) =2 (x.1)

= (10)
pU,
at different times during a period. This figure shows that the in-
stantaneous detachment point moves very little around its stea-
dy value: x4/(2L) = 0.1032 *+ 0.0064, whereas the reattachment
point position has a much larger fluctuation amplitude x,/
Hy=0.837 £ 0.0294. These results are qualitatively in good
agreement with the flow visualizations made by Nishimura et
al. (1986) who writes: ““The reattachment point is not fixed but
is fluctuating, in contrast to the case of the separation point’™.
This effect is quantified in Table 6 which gives the amplitude
of the location fluctuation of the detachment and reattachment
points for different amplitudes ¢ of the flow fluctuations.

It appears that for small fluctuation amplitude ¢ (less than
10°°), the amplitudes of the oscillations of the detachment
and reattachment points follow quasi-linearly the amplitude
¢ of the flow. When the amplitude increases further (larger
than # =5 x 107%), the amplitude of oscillation of the detach-
ment point increases suddenly, but the validity of this two-di-
mensional linear stability model is probably then questionable.

Fig. 6 presents the amplitude of the fluctuations of the ve-
locity components (ju'], [v}]). Large amplitudes are observed
in the converging region slightly upstream the reattachment
point, where the unsteady boundary layer is redeveloping, in
particular around x/(2L)== 0.8 as shown by the unsteady wall
shear stress coefficient results (Fig. 5).
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-2

Fig. 5. Local unsteady wall shear stress coefficient C,(x, ¢) at different instant.

Table 6

e=10"* g=10"" =107 £=5x 1072
Vool QL) 6.34 % 1073 6.34 x 104 6.37 x 107 0.0341
Yol2L) 241 x 107 240x 10 294x 107 0.1812

'l
I u 11.64
10.09
8.54
6.98
5.43
3.88
2.33
0.78

8.27
7.6
6.06
496
3.86
2786
1.65
0.85

Fig. 6. Velocity amplitude fluctuations components (ju'], |¢']).

4. Thermal unsteady problem
4.1. The energy equation

To analyse the effects of the TS wave on heat transfer, we
consider the unsteady velocity components (x, v) and temper-
ature field T written as

u=uw +et; v=1"+a' and T =747 (1)

Introducing u. v, T in the unsteady energy equation and
keeping first-order terms in ¢, the energy equation becomes

f).—rl + u[,'_()“T_l + U"O—Tl - —"AT1 = —y' ()TO GTU
ot ax oy ox B»
Note that the velocity pexturbdllons (u', v') introduce in the
energy equation a source term whose amplitude is proportion-

al to the amplitude ¢ of the dynamic perturbation. This source
term drives the unsteady temperature perturbation.

(12)

4.2. Uniform wall temperature

Under the assumption of a fully developed temperature
field and of a uniform and identical (top and bottom) wall tem-
peratures T,, the unsteady temperature 7(Z, #. t) can be writ-
ten as
T(¢onty=T, — T,0(E n.t) exp(—1&). (13)
The constant 7 is the eigenvalue obtained for the steady prob-
lem and 7, any reference temperature. The dimensionless un-
known temperature field O(Z, n, 1) is furthermore assumed to

be periodic in the ¢ direction with the same spatial period as
that of the dynamlc perturbation («', ¢')

0 q.ty =00 n) + 60" (¢ n.1). (14)

The second member of Eq. (12) is a source term periodic in
time with a period defined by the reduced frequency 3, of
the TS wave.

Using Egq. (14) and with #' @' written as functions:
filéngn = Redl(f(f nexp (i ) Eq (12) becomes

2h -
_ i 3l oGt i 1
ik +—AP p +r[/up( - (;;h 0!~ hf):)

+ % AO = —thij 0" + h (./}},(){j - ./}{,,0‘,;).

(15)

— h{w0 —udy)

The associated bounddry condmons are:
Periodicity: 0' (& + 2Mn, 5) = = LL q)
Symmetry of the perturbation: ' (¢, —y) = 0'(:
Constant and uniform wall temperature: 0' (¢, il] = 0.

4.3. The numerical method

These periodic and homogeneous boundary conditions al-
low us to develop the unknown function &' as
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Ny Ny .
0'(&m) =D Y 0;.,0n(n) exp(iké), (16)
k=—Nxm=0
where Q,, 1s a polynomial basis, linear combinations of Cheby-
chev polynomials, deﬁned so as to satisfy the homogeneous
boundary condition: 8'(¢, +1) =0.

Introducing this development in Eq. (15) and using a spec-
tral Galerkin method, we obtain a full system of linear com-
plex equations which reads
AX=B,

where X is usually the vector of the unknown coefficients 6] .

5. Thermal results
5.1. Nusselt number definition

Earlier work (Blancher, 1991) on steady convective heat
transfer analysis has emphasized the importance of using ap-
propriate reference quantities in the definition of the local Nu-
sselt number. Here we choose for reference length the
minimum half height of the channel H,. To get a better know-
ledge of the influence of the TS wave on convective heat trans-
fer we must take into account the dynamic unsteady effect. For
this reason, the local and instantaneous Nusselt number is de-
fined as the ratio of the local and instantaneous heat flux den-
sity o(x, 1) versus the difference between the constant wall
temperature 7T, and the time average bulk temperature
{Ty(x)) in each section x,

__ o1
Nu(x.t)4<T “T ) (17)
where ¢(x,1) = (8T/dn), = @°(x) +e¢'(x,1) is the reduced

heat flux density. The bulk temperature is
{ 1 .
(To(x)) = / (uT)dn, andthus (T, — Ty(x)) = / W0, dn
“0 0
(18)
Introducing the corresponding expressions this average tem-
perature difference becomes

(Ty — Tolx /we" dn + & /(Re(l/}')Re(é,;)

+Im(y )Im(()q)) dy (19)
and thus
(T — To(x)) = AT (x) + &AT (x). (20)

Under the assumption of small amplitude, the unsteady Nu-
sselt number can thus be written as

9°() + o9’ (x.1) o
ATO(x) + AT (x)
The effect of the TS wave on the convective heat transfer thus
appears through two parameters:
- the amplitude of the unsteady heat flux density |@!(x.1)|.
— the reference temperature perturbation AT (x).

Nu(x,?) =

5.2, Straight channel

Although it is well known that the transition from laminar
to turbulent flow in a straight channel is not triggered by TS
waves (Orszag and Patera, 1983), it seems interesting to in-
vestigate the effect of a TS wave on the convective heat transfer

Fig. 7. Straight channel - unsteady isotherms 7%5 (x, y, f) at one
instant.

in view of further comparison. Introducing this two-dimen-
sional perturbation in the unsteady energy equation and after
linearization, we obtain the total unsteady temperature field
T(x, y. t) shown at one instant in Fig. 7. The thermal perturba-
tion associated with the dynamic TS wave disturbs the thermal
boundary layer periodically in time and space giving a higher
fluctuation of the heat flux density in the vicinity of the wall.
This perturbation leads to a modification of the convective
heat transfer as shown in Table 7 which gives the heat flux
density amplitude |¢'| and the temperature difference modifi-
cation &AT" (¢=0.01) for different Prandtl numbers.
These values should be compared with the steady values:
™5 =3.128 and AT*S =1.659, which are independent of the
Prandtl number and give the classical Nusselt number
Nu®S = "$/AT*S = | 8854 with our Nusselt number defini-
tion. It thus appears that the TS wave has a large influence
on the heat flux density amplitude but affects very little the
bulk temperature. It is furthermore noted that the Prandtl
number has an important effect on the heat flux density ampli-
tude whereas it has very little effect on the bulk temperature.

5.3. Wavy channel

In this part, we consider the geometry defined by its period-
icity length 2L =8H, and amplitude E=2H, which is exactly
that considered by Sobey, slightly different from Nishimura’s.
All the results are obtained in the case M =1 and development
orders identical to those used for the dynamic study: Nx=38
and Ny =132.

5.3.1. Steady results

As an example Fig. 8 presents the steady isotherms 7%(x, y)
for the fully developed flow (Re=100 and Pr=1). Fig. 9
shows the local variation of the heat flux density ¢"(x) at the
wall and the reference temperature difference AT® for the stea-
dy solution. It is noted that the local steady Nusselt number
variation comes principally from the variation of the heat flux
density since the bulk temperature remains approximately con-
stant. We have shown that local enhancements up to 80% are
obtained slightly downstream of the reattachment point by
comparison with the results for a straight channel:

05 = 3128 and AT"S = 1.659.

5.3.2. Unsteady results
To visualise the effect of the TS wave on the temperature
field, Fig. 10 presents the unsteady isotherms 7(x, y, ) at

Table 7

Pr lo'| £AT!
0.1 1.61 -1.21 x 107}
1 4.82 -1.21 x 1073
10 13.82 ~1.15x 1077

100 54.6 -1.28 x 1073}
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-0.55 -0.38 -0. -0.08

Fig. 8. Wavy channel - Steady isotherms 7°(x,y) (Re=100; Pr=1).

Fig. 9. Heat flux density and temperature reference - steady flow

(Re= 100, Pr=1).

one time within a period. We can see how the thermal boun-
dary layer is affected by the TS wave, particularly in the con-
verging region where the dynamic boundary layer is strongly
perturbed.

Fig. 12 presents the amplitude of the fluctuation [0'] for
Re =100 and Pr=1. We observe that the large amplitude fluc-
tuations are located in the boundary layer near the reattach-
ment point. This region corresponds to the maximum
amplitude [#'| and |¢!] as shown in Fig. 6. These velocity fluc-
tuations and temperature perturbations associated with large
vorticity gradients, induce a strong local heat transfer modifi-
cation between the wall and the fluid, for this particular case of
constant wall temperature.

To analyse the effect of this perturbation on the heat trans-
fer, we present in Fig. 11 the heat flux density perturbation |p'|
and the difference temperature perturbation &*AT' as a func-
tion of x., We note two maximums of heat flux density ampli-
tude, localised around the steady detachment and
reattachment points. Moreover a small variation of the tem-
perature reference is visible slightly upstream the reattachment
point. As expected the large heat flux amplitudes are correlated
with position of maximum velocity, temperature and vorticity
amplitude around the reattachment point, where the wall shear

0.15 0.49 0.83 118 1.52 1.86 220 2.54

Fig. 10. Unsteady isotherms 7"(x. r, /) at one instant.
4 M .

— * 2Tt
elo'l 5h ¢ €At
I S AT 00020
4K "1-0.0030
t -0.0040
ab |
I -0.0050
i
2k -0.0060
/ -0.0070
1
B 1
0 2

X

Fig. 11. Heat flux density and temperature reference amplitudes - un-
steady flow (Re=100, Pr=1).
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Fig. 12. Temperature amplitude fluctuation 10" (x.3))-

stress amplitude is maximum. This qualitative result agrees
with similar studies on the local heat transfer in a sudden ex-
pansion by Sparrow et al. (1987).

5.3.3. Reynolds number effect

The above results have been obtained for a Reynolds num-
ber equal to 100 and an amplitude fluctuation set to ¢=0.01.
We have noted that a pair of complex eigenvalues crosses the
Reynolds axis (Fig. 2), which corresponds to a Hopf bifurca-
tion. Non-linear time integrations have indicated that this bi-
furcation is of supercritical type as shown by Guzman and
Amon (1993). Consequently, following Landau’s theory (Land-
au and Lifshitz, 1971). for Reynolds numbers sufficiently close
to the critical Reynolds number, all quantities are thus expected
to vary sinusoidally in time with an amplitude ¢ proportional to
¢ = A(Re — Re.)'"” (22)

and consequently, in the linear approximation used here, aver-
age effects in time should remain identically zero. However, the
non-linear term (u7) which appears in the definition of the
conventional bulk temperature results in a non-zero time aver-
aged second-order & effect in the time averaged temperature
difference which reads

(Ty — To(x)) = AT® + (Re — Re)AT".
The unsteady Nusselt number reads then

|
Nu(x,7) = Nu' (1 +(Re - Rec)"’z% sin (57 + u))
[¢
AT'
x <1 ~(RevRec)m>, (23)

where the first term in brackets on the right-hand side varies
sinusoidally in time while the second is constant. Its time aver-
aged value reads, to the first order in (Re — Re.):

, AT! .
Nu(x) =~ Nu* (1 —~ (Re — Rec)ﬁ) (24)
and thus shows a small but non-zero second-order augmenta-
tion, since AT' is negative. This effect increases significantly
with increasing Prandtl number.

5.3.4. Prandtl number effect
To illustrate Prandtl number effects, Fig. 12 presents the
temperature perturbation amplitude for different Prandtl

numbers 0.1, 1 and 10 (the Reynolds number is kept equal
to 100). It is seen that increasing the Prandt! number deeply af-
fects the thermal boundary layer especially in the converging
section of the flow. In addition, Fig. 13 presents the evolution
of the heat flux density amplitude fluctuation for these different
Prandtl numbers with the same TS amplitude. As for a straight
channel, we observe the strong influence of the Prandtl number
on the heat flux density amplitude particularly at the detach-
ment and reattachment points.

6. Conclusion

We have numerically obtained the unsteady temperature
field for an unsteady self-sustained laminar flow in a channel
of periodic cross section. The perturbation driven by a TS
wave induces strong amplitude fluctuations of velocities, vorti-
city and temperature in the reattachment region of the boun-
dary layer in the converging section. These fluctuations lead
to very large amplitude of the heat flux density, these ampli-
tude increasing strongly with the Prandt] number near the re-
attachment point. With the hypothesis of small amplitudes
perturbation (¢ < 0.01), the mean wall to bulk temperature
difference is only slightly modified by the TS wave and the

elo'l )
25F % Pr=01
i Pr=1 | |

20F [ e Pr=10 | |
1sp 1 o

R T S S S S A I

Fig. 13. Heat flux density amplitude |o'(x.p)|.
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effect of the TS wave on the average heat transfer remains
small but non-zero even in the framework of a linear approx-
imation.
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